The History Of Amateur Radio

This portion of my website was prepared with the help of Bill Continelli, W2XOY. Bill has prepared several articles in a series he calls "The Wayback Machine", in the hope to expand the knowledge of fellow hams, about Amateur Radio's unique and unchallenged history.

THE WAYBACK MACHINE #4    by Bill Continelli, W2XOY

By the time World War I ended in November, 1918, almost 5000 amateurs had served in uniform, with many giving their lives overseas. Amateurs had proven themselves to be invaluable to the war effort. The Army and Navy were faced with an absolute lack of trained radio officers, instructors, operators, and even state of the art equipment. Amateurs stepped in and provided the knowledge, men and sometimes even the equipment necessary to help win the war. An interesting example of this was the case of Alessandro Fabbri, a wealthy yachtsman and radio amateur, who had top notch stations on board his yacht and on Mount Desert Island, Maine. The Navy commandeered the stations (and the yacht), made Fabbri an ensign, and placed him in command. Largely with his own money, he expanded his operation and improved his equipment. Fabbri's station was used to pass most of the official communications between the battlefronts in Europe and Washington. The traffic often amounted to 20,000 words a day, most of them in cipher. Captain (later Major) Edwin Armstrong, whose regenerative receiver was being used worldwide, was in charge of the Signal Corps' Radio Laboratory in Paris, where he developed the superheterodyne receiver. Thousands of amateurs served as Navy radiomen and Signal Corps operators.
It would seem from the information above that amateurs had conclusively proven their worth and that the Navy would return the amateurs' frequencies back to them once the war had ended. Sadly, this was not the case. A string of events conspired against the amateur, and almost eliminated all privately owned stations.

The villain in this play was the Secretary of the Navy, Josephus Daniels, a puritanical landlubber and teetotaler, whose opinions often got him into trouble. He was the type of individual that H. L. Mencken and Sinclair Lewis satirized as "one who is terrified that somewhere, someone is having fun". For years, he had demanded that the Navy have exclusive control of the radio spectrum. Now, it appeared, he had his chance.

The effects of the first modern global war, along with the Bolshevik Revolution in Russia, had temporarily turned the country extremely conservative. It was in this mindset that the Espionage Act of 1918 and Prohibition were passed. Hundreds of suspected communists and anarchists were deported in the "Red Scare". Even the great Socialist Eugene V. Debs was imprisoned for disagreeing with the government. Seizing the opportunity, Secretary Daniels urged the passage of legislation giving the Navy a monopoly on radio communications. As a result, the Poindexter Bill was introduced in the Senate, and the Alexander Bill in the House. Political observers gave both bills an excellent chance of passing.

Back at the ARRL, things looked bleak. All memberships had lapsed (along with all amateur licenses), 80% of the amateurs were still overseas, QST had ceased publication, the unpaid printing bill was $4700, and there was $33 in the treasury. However, action was needed immediately to defeat these bills. Hiram Percy Maxim and the other board members dug into their own personal funds and sent out a "blue card appeal" to all known amateurs or their families asking them to write their Congressman and urge defeat of these bills. It worked. Thousands of letters poured into Washington from amateurs or (more often than not) their family members asking that amateur radio be saved. Congressmen who opposed a military monopoly of the airwaves also joined in, lending their support to amateur radio. Overwhelmed by this grassroots opposition to Naval control of the radio spectrum, Congress killed the bills in committee. This 1919 letter writing campaign had a profound historical impact on all of radio, for, had these bills passed, not only would amateur radio have disappeared forever, but all private communication activities (such as broadcasting, business radio, CB, GMRS, Cellular etc.) either never would have evolved, or would have been delayed by years or even decades.

With the bills defeated, Maxim and the ARRL Board of Directors issued $7500 worth of bonds to League members to get QST going again. At the same time, pressure was brought on Washington to lift the radio ban and allow amateurs back on the air. Partial success was achieved on April 12, 1919, when the Navy removed the ban on receiving, but not transmitting. Thousands of amateurs and other listeners removed the seals from their receivers (which had been placed there by Government Radio Inspectors), strung up their antennas and warmed their filaments with the sounds of the government stations. But they wanted more. Their fingers fondled their telegraph keys as they waited for the lifting of the transmitting ban. Finally, in November 1919, after a Joint Resolution had been introduced in Congress demanding that the Secretary of the Navy remove the restrictions on amateur radio, the transmitting ban was lifted, licenses were reissued, and amateurs were back on the air.

Now began the "second war", Spark vs. CW. Remember that amateurs were allowed, in effect, just one frequency - 200 Meters. A spark station on 200 meters actually generated a signal from 150 to 250 meters. With the sensitive regenerative receivers now in use, the practical range was several hundred miles. Transcontinental relays now took less than five minutes. The number of licensed amateur operators stood at 5719 in 1920, 10,809 in 1921, and 14,179 in 1922. And all were operating on 200 meters! To quote Arthur Lyle Budlong in "The Story of the American Radio Relay League", it was "Interference, Lord, what interference! Bedlam!". Something had to be done.

And it was. Various transatlantic tests were conducted from 1921 to 1923. The results overwhelmingly showed CW was far superior to spark. Postwar vacuum tube production was at its peak. In 1921, an RCA 5 watt tube cost $8, and, as a single tube CW transmitter, could outperform a 500 watt spark station. A 50 watt tube cost $30, and was five times more effective than the best 1kw spark station. Since CW took only a fraction of the bandwidth that spark did, over 50 CW stations in the same area could occupy the 150 to 250 meter range, vs. one spark station.

The transatlantic tests also revealed some other interesting facts. Due to the excessive interference on 200 meters, some stations had dropped down to 100 meters where, to their surprise, they found conditions much better. Throughout the 1922-24 period, hundreds of tests and casual contacts were made on the 100 meter wavelength which conclusively showed not only CW's superiority over spark, but increased range on the shorter wavelengths. Once again, the scientists came forward and said that long distances on 100 meters were mathematically impossible, and once again, the amateurs proved them wrong. During 1924, several CW contacts were made at distances exceeding 6000 miles. On October 19, 1924, a station in England worked New Zealand, a distance of almost 12,000 miles. Amateur communications had now reached halfway around the world. Although it would take a few years to discover the role that the ionosphere played in shortwave communications, there is no doubt that amateurs pioneered the practical uses of shortwave.

The phenomenal success of CW convinced the vast majority of amateurs to buy that vacuum tube. A few still clung to their spark sets, screaming "spark forever", but by 1924, spark was almost extinct. The 150 to 250 meter region was now orderly, filled with thousands of CW stations living in peaceful coexistence with each other (and the occasional spark renegade). Legally, however, amateurs could not go below 150 meters. True, many were already on 100 meters without a problem, but amateurs wanted a slice of the shortwave spectrum allocated to them. After all, it was amateurs who discovered the short waves, now, with world wide interest being shown here, they wanted protection. Negotiations were ongoing with the Department of Commerce to give the amateurs specific frequencies.

On July 24, 1924, the Department of Commerce authorized new amateur frequency bands. They were 150 to 200 meters (1500 to 2000 kc), 75 to 80 meters (3500 to 4000 kc), 40 to 43 meters (7000 to 7500 kc), 20 to 22 meters (13,600 to 15,000 kc), and 4 to 5 meters (60,000 to 75,000 kc). Except for a portion of the 150 to 200 meter band, spark was prohibited. Spark would survive in the hands of a few rebels until 1927 when it was banned altogether. CW was here to stay. By January, 1925, the 80, 40, and 20 meter bands were filling up with amateurs, drawn by the promise of transcontinental, daylight DX.

The Wayback Machine is going to hover over the 1920's for one more month, checking out an amateur with the call 8XK, and his activities on the night of November 2, 1920. In the meantime, take a sip of that Prohibition bootleg gin, check out those new SW bands, and join us next month on board the Wayback Machine.

Copyright 1996, 2001, 2005 by William Continelli, W2XOY

All rights reserved.

These columns were originally written for the Schenectady Museum Amateur Radio Club.